� EMBED MS_ClipArt_Gallery ���

CalcSpeed 4.0 (for use in MS Excel 5 and later editions)

This utility is originally created by the designer of © Acoustic.Function.Box ®, THE acoustic Add-In module for MS Excel, for his own proper use, mainly in order to investigate the efficiency and calculation speed of the programming syntax code.	 �It neither uses MS Excel, nor VBA Time functions, since the most accurate are still limited to a time resolution of ca 0.055 seconds, but uses Windows API resource code instead in order to improve this basic time resolution to ca 0.005 seconds in MS Excel 5 (16 bit) and ca 0.001 seconds in all other MS Excel versions. Automatic overhead analysis and averaging procedures increase accuracy to microseconds.

As such it contributes to the user-friendliness of the © Acoustic.Function.Box ® acoustic Add-In program.

Since it proved to be useful for other purposes, as checking the efficiency of complex and/or extensive calcula�tion models, or comparing the use of different formulas or algorithm’s, the designer decided to incorporate it as a, by the user accessible utility in the © Acoustic.Function.Box ® program itself, and additionally adjusting it a bit as a standalone utility which could be distributed as Freeware (Note: this utility is prohibited to be distributed for direct or indirect commercial use, as well as a standalone utility, as well as part of, or integrated in another pro�gram). While thoroughly tested in MS Excel 5 and MS Excel 97 (different language versions), this utility is made available 'AS IS'.	 �Disclaimer: the user takes full responsibility for all direct or indirect events resulting from the use of this utility.

The basics:

The basic principle is rather straightforward.

The utility will enter one or two arguments in the related cell or cells being (a) precedent(s) of the function, algo�rithm or calculation model. As such MS Excel will be forced to recalculate the related part of the sheet. Then the time needed for this calculation is measured and shown in a resulting dialog box.

Since one calculation should result in a questionable statistical result, the procedure will be repeated, until a rea�sonable number of calculations, or a reasonable amount of time is obtained to get a representative averaged cal�culation speed result.

The utility is capable by use of iterative loop procedures, to define itself a reasonable number of calculations in order to get a representative calculation speed result. Of course this automatic procedure can be overruled by a custom defined number of calculations or time.

In order to follow the procedure, for every individual calculation the total elapsed time will be calculated and av�eraged, resulting in an estimated total and remaining time, which are shown in a progress report in the formula bar. Additionally the programming code of the utility itself, will take part of the total calculation time which should be analyzed and subtracted from the total time.

However the time needed for those procedures must be analyzed and used as corrections in view of the total calculation time, in order to get a resulting net calculation time, not influenced by overhead procedures not re�lated to the calculation speed in investigation.

In order to find this overhead, the utility needs a neutral cell reference, since it will use this cell in order to simu�late the main test, by executing some pre-tests. Entering a value in this neutral cell should not trigger the formu�las, algorithm’s or calculation model in investigation, to be recalculated. Those pre-tests will use exactly the same procedures as used for the subsequent main test. As such the overhead time needed by the utility, includ�ing screen updating, progress report in status bar etc., can be analyzed, in order to correct the subsequent main test calculation time results.

The utility allows a lot of different combinations of procedures to define or extract the values that should be en�tered as argument(s) to the function, algorithm or model in investigation.

Screen updating can be locked, which allow the user to exclude the graphic calculation time needed by the com�puter to rebuild the screen after every recalculation. Comparisons between a locked and non-locked (standard working) screen can show the time needed for this phenomenon.

� EMBED MS_ClipArt_Gallery ���

After the test is executed, a summary and the results (21 lines) will be shown in a dialog box. This dialog box allows to repeat the test or restart the test with deviating parameters. When a test is repeated, as well the individual results, as well the multitest averages are calculated and shown.

The utility automatically stores all test results in memory. If a user should exit the utility after one or multiple re�peated tests and/or multiple deviating parameter tests, he can copy all data of all those tests to the Clipboard.

As such he can paste all the subsequent dialog box results as a table to any position on the (or any other) work�sheet he likes.

A simple example (see below):

Note: this example is only given to get the feel of this utility. It has no sense for a few simple formulas to perform calculation speed analysis. However the user can imagine much more extensive complex calculation models.

Take a basic logarithmic addition of octaveband dB values (entered as an array formula = Control+Shift+Enter):

{=10*LOG(SUM(10^(C5:C14/10)))}

If one isn’t used to logarithmic calculation, such a basic formula still can be complex. Therefor one can choose to enter such approach in a template with a standard frequency range from 31.5 to 16000 Hz, and pre-entered for�mulas.

However, a lot of measurement data will only cover part of that frequency range. MS Excel will automatically in�terpret empty cells as 0 values, which arithmetically is correct but from a logarithmic point of view is completely wrong. The user will recognize a typical energetic distribution curve in columns 2 and 6.

The blank cells E5 and E13:E14 cause the total in E15 to be completely wrong!

So we can improve the array formula in order to treat the blank cells as non-existing:

{= 10*LOG(SUM(IF(ISNUMBER(H5:H14),10^(H5:H14/10))))}

So we still are left with the fact that as long no values are entered at all, even this corrected formula will return an error value since 10$LOG(0) is a mathematical impossibility. We introduce a check in the formula allowing it to calculate only when at least one value is entered, while otherwise returning a blank looking cell (called an Empty text value).

{=IF(COUNT(H5:H14)>0,10*LOG(SUM(IF(ISNUMBER(H5:H14),10^(H5:H14/10)))),"")}

This formula guarantees correct return values as well in H15 as in J15, and will show a pseudo-blank cell as long there is nothing to calculate.

QUESTION:

What is the time difference between both approaches. Is the time loss as such that we better force the user to enter a formula based on a correct and complete number of argument (input) values, or do we choose for the second, more time consuming but more flexible method?

�

Let’s check the time difference between the cells C15 and H15.

Using CalcSpeed 4.0

Assume we have no idea how many calculations will be needed to get a representative calculation result. We assume that in this extreme simple situation, it will be fast, but how fast?

So we let the utility do its job, by neither entering a number of calculations to execute, nor a minimum time.

When no time is entered (ignored) the utility searches for a rounded number of calculations exceeding 5 sec�onds.

In this simple situation we choose only one variable to be changed in respectively C6, repeat the test 2 times, then repeat the same procedure in H6, both procedures with normal screen updating.

�

Subsequently exactly the same procedure was followed but with screen updating set to ‘locked’.

The results show that the improved formula respectively increases the basic formula with 0.219 msec and 0.213 msec, representing respectively 23% and 31% of the total calculation time, prov�ing that the logarithmic calculation itself is the main part of the formula.	 �As such one still could conclude, depending on the priorities one defines, that the advantage of the user-friendliness of the more complex calculation, even while calculating a bit slower, probably outweighs the simplicity of the basic formula.

The designer repeats here that in this simple case, those extreme minor values are a waste of time to analyze, but only wants to show the principle of the utility.

Test are executed in MS Excel 5.c (16 bit) installed in MS Windows 98 on a PII 200 MHz computer.

Note: tests showed that MS Excel 97 (32 bit) in exactly the same OS and computer, doesn’t necessarily performs faster (sometimes even the reverse).

�

The subsequent calculation time results are stored in memory exactly as shown in the table above, copied to the clipboard (by use of the ‘Copy All + Exit’ button in the related dialog box), and after exiting the CalcSpeed 4.0 utility, pasted into MS Excel.

Between the subsequent tests the utility was not exited. The table formatting was applied afterwards to make the returned more readable.

As one can see, when identical tests are executed the input parameters are only set in the first column. If one alters one of the parameters after returning to the main dialog, the adjusted parameters are shown again. As such one can easily distinguish between repeated tests (which automatically will return as well the individual as well the averaged values), and new tests. One can combine any possible sequence and num�ber of tests.

�

It should be clear by now that this utility is mainly designed to optimize extensive com�plex calculation models, but even more important the programming syntax of complex functions and/or algorithm’s, certainly when complex time consuming iterative proce�dures are involved.

�
An example, only meant for programmers:

� EMBED Equation.DSMT4 ���

When all variables are known except T2, and we must solve the above equation for T2, one will notice that there is NO analytic solution to this problem. Due to the highly non-linear character of the equation you can NOT re�write the formula that it directly solves for T2.

So we must resort to iterative procedures. Since the above equation is minor part of one of the © A.F.B ® func�tions, at its turn nested in higher level iterative procedures, to be calculated on complete frequency ranges simul�taneously, it is important to find the fastest way to calculate T2.

For this example we worked out 2 VBA procedures translating the above problem in a custom defined function, only calculating one single return value.

The formula as entered in the worksheet:

=RT2..(MatToAdd,V,S,T1,aSab,Decimals,logbase,F,MaxNumberIters) where RT2.. = T2 we are looking for.

3 different methods were investigated distinguished by adjusting the function name to RT2a, RT2b and RT2c

--

Procedure 1: RT2a(MatToAdd,V,S,T1,aSab,Decimals,logbase,F,MaxNumberIters)

Function RT2a(MatToAdd As Double, V As Double, S As Double, T1 As Double, _

 aSab As Double, Optional Decimals As Variant, Optional logbase As Variant, _

 Optional F As Variant, Optional MaxNumberIters As Variant) As Variant

 Dim LowVar As Double, HighVar As Double, NowVar As Double, CorVar As Double

 Dim NowResult As Double

 If IsMissing(Decimals) Then Decimals = 10

 If IsMissing(logbase) Then logbase = Exp(1)

 If IsMissing(F) Then F = 0.161

 If IsMissing(MaxNumberIters) Then MaxNumberIters = 45

 MatToAdd = Application.Round(MatToAdd, Decimals)

 LowVar = 0

 HighVar = T1

 CorVar = (HighVar - LowVar) / 2

 NowVar = LowVar

 For Cntr = 1 To MaxNumberIters

 NowVar = NowVar + CorVar

 aE = 1 - logbase ^ (-F * (V / (NowVar * S)))

 NowResult = (aE * S * (T1 - NowVar)) / (aSab * (T1 - NowVar * aE))

 If Application.Round(NowResult, Decimals) = MatToAdd Then Exit For

 If NowResult > MatToAdd Then

 CorVar = Abs(CorVar) / 2

 Else

 CorVar = -(Abs(CorVar) / 2)

 End If

 Next Cntr

 RT2a = NowVar

End Function

Procedure 2: RT2b(MatToAdd,V,S,T1,aSab,Decimals,logbase,F,MaxNumberIters)

Function RT2b(MatToAdd As Double, V As Double, S As Double, T1 As Double, _

 aSab As Double, Optional Decimals As Variant, Optional logbase As Variant, _

 Optional F As Variant, Optional MaxNumberIters As Variant) As Variant

 Dim LowVar As Double, HighVar As Double, NowVar As Double, CorVar As Double

 Dim NowResult As Double, MaxDiff As Double

 If IsMissing(Decimals) Then Decimals = 10

 If IsMissing(logbase) Then logbase = Exp(1)

 If IsMissing(F) Then F = 0.161

 If IsMissing(MaxNumberIters) Then MaxNumberIters = 45

 MaxDiff = (1 / 10 ^ Decimals) / 2

 LowVar = 0

 HighVar = T1

 CorVar = (HighVar - LowVar) / 2

 NowVar = LowVar

 For Cntr = 1 To MaxNumberIters

 NowVar = NowVar + CorVar

 aE = 1 - logbase ^ (-F * (V / (NowVar * S)))

 NowResult = (aE * S * (T1 - NowVar)) / (aSab * (T1 - NowVar * aE))

 If Abs(NowResult - MatToAdd) < MaxDiff Then Exit For

 If NowResult > MatToAdd Then

 CorVar = Abs(CorVar) / 2

 Else

 CorVar = -(Abs(CorVar) / 2)

 End If

 Next Cntr

 RT2b = NowVar

End Function

Procedure 3: RT2c(MatToAdd,V,S,T1,aSab,Decimals,logbase,F,MaxNumberIters)

In fact Procedure 3 equals exactly Procedure 1 with this exception that the Application.Round(...) function (works in both MS Excel 5 and MS Excel 97 and later) is substituted by the WorksheetFunction.Round(...) function (which did not existed in MS Excel 5 and therefor is only applicable in MS Excel 97 and later).

Procedure 1:	MatToAdd = Application.Round(MatToAdd, Decimals)

		If Application.Round(NowResult, Decimals) = MatToAdd Then Exit For

Procedure 3:	MatToAdd = WorksheetFunction.Round(MatToAdd, Decimals)	�		If WorksheetFunction.Round(NowResult, Decimals) = MatToAdd Then Exit For

The arguments on the worksheet:

�

Lets do a calculation time test on those 3 different function versions, in order to check, if the used syntax in the programming code does have any significant influence.

We keep it simple:

With the CalcSpeed 4.0 utility, we only will toggle the T1 variable in cell C6 between 1.95 sec and 2.5 sec.

We set a value of 2500 in the ‘Number of times to calculate:’ input box.

We perform every test 2 times, for any of the 3 different functions. This can easily be done by entering a single quote at the left of the equal sign in the not to be tested formulas (formulas located in cells C15, C16 and C17). As such 2 of the 3 formulas are shown as text, while only the to be tested one remains active.

Note: that formula RT2c can only be tested in MS Excel 97 and later, since it uses a function in the programming code, not yet existing in MS Excel 5.

We perform exactly the same procedure in MS Excel 5 and MS Excel 97, installed in the same operating system on the same computer (The following results are based on Windows 98 on a PII 200 MHz).

�
The calculation speed results:

�

Those tests prove the usefulness of a utility as CalcSpeed 4.0.

The results are at least surprising.

Lets analyze them:

MS Excel 5 versus MS Excel 97	�While MS Excel 5 is a 16 bit program and MS Excel 97 is a 32 bit program, at least for those tests, it shows that MS Excel 5 is systematically faster (to much faster) than MS Excel 97, while one normally should expect the reverse.

RT2a versus RT2b	�Both function work as well in MS Excel 5 as in MS Excel 97.	�The calculation time difference is enormous.

In MS Excel 5: 	RT2b = 5.3 times faster than RT2a

In MS Excel 97: 	RT2b = 8.1 times faster than RT2a

RT2c versus RT2b	�The calculation time difference is still enormous.

In MS Excel 5: 	not applicable

In MS Excel 97: 	RT2b = 6.9 times faster than RT2c

If you analyze the cause for the above points 2 and 3 in the programming code, you will notice that the functions RT2a and RT2c use a rounding procedure based on worksheet functions.

In the function RT2b the designer substituted those worksheet rounding functions by a pseudo rounding proce�dure, which could be calculated directly in VBA without the proper use of a worksheet function.

An important lesson can be learned from that. It is clear that VBA doesn’t handle very well the worksheet func�tions, and that this problem became worse in MS Excel 97.

While in lot of cases those calculation time differences will not matter at all, there are cases where complex cal�culation models, with lots of formulas, or complex functions, as there are a lot in © Acoustic.Function.Box ®, less efficient programming syntax, can cause differences of up to several, even ten’s of seconds per recalcula�tion.

�

As the above example makes clear, the CalcSpeed 4.0 utility, was designed for the own proper use of the © Acoustic.Function.Box ® designer, in order to check and learn how to integrate a maximized efficiency and calculation speed in the acoustic Add-In module for MS Excel, in order to make it as user-friendly as possible.

Accuracy of the CalcSpeed 4.0 utility:

While originally based on the Excel and VBA time functions: NOW() & Timer, additionally improving the calcula�tion speed test results by averaging procedures, in May 2001 the utility was reprogrammed to use Windows API resource code instead (no Excel or VBA time function are used any further) . The most accurate available re�course code to be used is dynamically defined by the utility depending on the user’s OS and MS Excel version.

This further improves the time resolution (accuracy) of the utility with an additional factor of ca 55 in MS Excel 97 and later, and with a factor of ca 11 in the old MS Excel 5, resulting in a total final test accuracy to be expressed in milliseconds, even microseconds.

However, while the utility analyses and corrects the calculation speed test procedure overhead time, the user should be aware that multitasking is controlled by the OS system and MS Excel. This means that minor devia�tions in multiple similar calculation procedures can and will occur.

CalcSpeed 4.0 How to use it?

The main dialog

�

Note: The values and references in this dialog box, as well in the details further down are the values and references as used in the first worksheet example.

If you have the utility as a standalone Freeware utility:	�careful: can not be used for any direct or indirect commercial use, or as a utility delivered as part of an�other program, not explicit authorized by the designer in writing.	�The best way is to copy the utility to the Library directory (of your proper lan�guage version of that).	�Activate the utility with the Menu: Tools/Add-Ins (or your proper lan�guage version of those) and check the item ‘CalcSpeed 4.0 © A.F.B ®’. To deactivate the utility uncheck the utility again.	�A new command menu item with the same name will appear at the bottom of the Tools menu (or your proper lan�guage version of this).	�This ‘CalcSpeed 4.0 © A.F.B ®’ com�mand will activate the Main dialog box in order to start the calculation speed test.	�Of course, you can open the Add-In file also in any other way, by installing it in the XLStart directory, or just opening the file, but it’s the designer’s opinion that this is a less advisable approach.

If you have the utility as an integrated part of © Acoustic.Function.Box ®:	�The utility is controlled by the main pro�gram, and can not be activated as a standalone utility. The utility can be ac�tivated in two ways:

Via the menu item: Acous�tics/Advanced Expert Tools/testing cal�culation speed or,

Via the © A.F.B ® tool: � with Tool Tip Text: Calculation speed test for © A.F.B ® functions/models.

�

Number of times to calculate.	����The utility will execute the time test more then once (unless you should have a very time consuming calcula�tion procedure exceeding the time set by the next input box).	�If no number is entered and no time (next input) is entered, the utility starts an iterative loop procedure in or�der to find a number exceeding a calculation test time of 5 seconds.	�If a minimum time is entered in the next input, the utility starts an iterative loop procedure in order to make a fair estimate of the number of calculations needed, to exceed that time.	�A dynamic roundup procedure is used when applicable.

�

Minimum usable test time in seconds	.����If no time is entered, but a number (previous box) is entered, the utility starts an iterative loop procedure to check if the number as entered exceeds a minimum test time of 5 seconds. If not the utility will automatically increase the number of times to calculate.	�If a time is entered < 2 seconds the utility will neglect this input and treat the input box as if it should have been ignored by the user.	�Any time between >= 2 seconds will be accepted by the utility.	

Note: Both the values for the number of calculations and the minimum test time interact with one another.

Basically if values are available the utility will choose the most time consuming (longest) procedure of both. The utility tries to interpret this test time as a minimum net test time for the calculation speed test. As such the utility will add (if needed) the overhead time for the program, procedure, screen updating, progress report in the for�mula bar etc. to the test time.

However this can be dangerous. If a user should test a calculation speed time on an empty sheet, by just enter�ing an argument in a cell, which does not trigger any calculation to recalculate, or the calculation time should be that small, that the net calculation time is almost negligible, this procedure of interpreting the test time as a net test time, could cause the utility the increase the amount of calculations enormously.

The internal algorithm’s will prevent this from happening, so there is no risk involved.

If there is in fact no, or almost no added net calculation time, the utility will try a bit more, to find something to cal�culate, but will limit this if no clear definable added calculation time is encountered. Therefor the user can safely try the utility, even on an empty worksheet.

�

Select any cell outside calculation area.	����Check the first example: Cell B19 is just a random chosen cell, with no relationship whatsoever with the formula/function/model to be investigated.	�Every computer has a different speed. The same goes for screen updating, software versions etc.	�The utility allows a lot of different test combinations.	�In order to find the net calculation time, the utility needs to simulate the main calculation speed test some�where in a neutral spot, which does not trigger the formulas/functions/models to be investigated.	�As such the utility is capable of distinguishing the net calculation time for the functions to be investigated from the overhead time used by all other things.	�Two tests will be executed, with this cell as the target cell to enter the arguments normally meant for the func�tion in investigation.

The first test without calculation of any progress. This test measures the time needed for the utility to enter the arguments in the sheets, which can include screen updating (depending on setting).

The second test will repeat the previous procedure, but starts calculating all data needed for the prog�ress report, which than is shown in the formula bar.

Only then the main calculation speed test will be executed.	

 Note that those steps will be repeated, if necessary, until a valid test time is found.

This neutral cell does not have to be an empty cell, but can be a formula, or any value. When the utility ends, even when this happens by pressing the Escape key, or if an error should occur, the original content of this cell will be restored.

Arguments to Target reference.

�

The user can choose different methods to define the values that should be entered as argument(s) in the function in order to trigger the recalculation.	�One can choose to influence only one argument, or two arguments, which can be entered in parallel or in se�ries (see later in ‘test method’).	�If this option is chosen, the utility will check, if the second target reference is available provided with all nec�essary input.	�If both arguments are set to this option, an alert message will warn the user and return the main dialog again.	��This next method is used in the first ex�ample in this document.	�The values entered in the input boxes are toggled as argument value and entered into the target reference.	�All 3 input boxes are required.	�The input values must be valid numbers.	 ���This next method allows to enter random values into the target reference.	�Random numbers are defined between the lowest and highest values, both included.	�Negative numbers are allowed.	�One can define the number of Decimals if rounded values are required.	�The Decimal input box is optional. If this input is ignored, no rounding will be ap�plied. 	�The Lowest and Highest values must be valid numbers, but can be reversed (in fact the utility just requires two boundary val�ues).	�While the option of defining random values can have its advantages, since it allows to enter a huge number of different argument values, it also can involve risks, depending on the purpose of the calculation speed test.	�E.g. some iteration procedures will use different numbers of loops, depending on the input values. In such a case it can be useful to get an averaged calculation time.	�If however one wants to compare two algorithm’s with one another, using random numbers, also means that most likely both procedures recalculated based on deviating arguments. In such a case one must make sure that the number of calculations is large enough to have a statistical representative set of calculations.	��This next method allows to enter multiple values and even blanks into the target reference.	�In order to preserve the possibility of using multiple argument values, while maintaining the certainty that all test will be executed on exactly the same argument values, this option allows to select any worksheet range including the argument values to be en�tered in the target argument reference.	�You can find the reference in this picture in the first worksheet example in this docu�ment.	�This range can include any number of rows and columns. The argument range will be used sequentially from left to right and from top to bottom. 	�Blank cells in the Argument range reference, as well as error values, will be entered in the Target argument cell as blanks. The Target argument reference is really cleared (not an empty text value).	�This allows to check functions also, where a blank cell as an argument should be interpreted as 0 or #N/A (depends on function).	�Since this range can also contain only two cells, this option can substitute the first ‘Toggle between 2 values’ option, with the additional possibility of clearing argument cells.	�

�

�

�

Changing two function arguments instead of one.	�Often it can be useful to influence more than one argument. Different arguments can cause algorithm’s or functions to use deviating calculation procedures.	�Or it can be needed to change more than one argument, in order to trigger an extensive calculation model to recalculate completely.	�Or one can trigger two different functions simultaneously in order to recalculate.	�This utility allows to influence two arguments simultaneously, while every individual argument value can be defined or extracted, independent of one another, as per any of the previous described ‘Arguments to target reference’ methods.	��If one of both ‘Arguments to target reference’ groups is set to ‘Don’t use this argument’, the ‘select test method’ group box will be disabled, since those options only apply to two target argument references.

� EMBED Word.Picture.6 ���

�

�If both argument methods are set to be used the following rules/methods apply:	

First the argument value resulting from the first group will be entered in the first target argument cell.	�Then the argument value resulting from the second group will be entered in the second target argu�ment cell.	�This procedure will be repeated until the test ends. So the entry of the argument values will be tog�gled between both Target argument cells.

Example when both groups are set to: Toggle value 1 and 2 as argument to target reference:	�1	1st value 1st argument group to 1st target argument cell	�2	1st value 2nd argument group to 2nd target argument cell	�3	2nd value 1st argument group to 1st target argument cell	�4	2nd value 2nd argument group to 2nd target argument cell	�5	1st value 1st argument group to 1st target argument cell	�6	etc.	

�

Example when both groups are set to: Continuous loop trough reference to extract arguments:	��Imagine the 1st argument array to be entered in the 1st Target argument cell as 2 columns by 5 rows, and the 2nd argument array to be entered in the 2nd Target argument cell as 3 columns by 7 rows.��This represents a rather complex programming pro�cedure, since 2 independent asymmetric loops, based on deviating array sizes must continuously circle, toggling between one another.	�In the 2 tables to the right the order numbers are noted that the values are extracted from the respec�tive arrays. The 1st array is entered in the 1st Target argument cell, the 2nd array is entered in the 2nd Target argument cell.	�This procedures continuous circling trough both arrays until all recalculations are executed.

�

Select test method:	�When one enters 2 argument values to their respective Target ar�gument cells, one can still prefer to execute the recalculation after both arguments are entered, or one can recalculate every time a subsequent argument is entered in the related Target argument cell.	�When both arguments are activated by not selecting: ‘Don’t use this argument in either of both groups, the ‘Select test method’ group will be enabled. 	�Both arguments in parallel: 	Both arguments will first be entered in their respective target cells before recalculation will be executed. This means that recalculation is set to manual before the 1st argument is entered, then both arguments are entered and subsequent recalculation is executed (set back to automatic calculation).	�Both arguments in series:	Recalculation will be executed every time an argument is entered in ei�ther of both respective target argument cells.	�

�

� EMBED MS_ClipArt_Gallery ���

Lock screen updating	�When this option is checked all screen updating will be locked.	�For non programmers, it can give the false impression that the com�puter isn’t working anymore. However this isn’t true.	�A lot of calculation time, with any software, is used to build up the monitor screen. Every time a value is changed in an MS Excel worksheet, this screen will be rebuild. The time needed to do so, depends on an enormous amount of factors, which include as well the software as the hardware. Even the position of the Neutral cell outside the calculation aria in investigation, can influence this screen refreshing time.	�When one wants to perform calculation speed tests, on models or functions with a relative (in computer terms) long recalculation time, this screen updating time is negligible. However when testing very fast functions, one will notice that the calculation time needed for this screen updating can be as, or even more important than the time needed by the utility program code and the calculations in investigation combined.	�For testing huge amounts of very short calculations, it will often be advisable to exclude this screen updating from the calculation speed test, in order to measure solely the naked calculation time. 	�The user shouldn’t worry, since the progress report which is shown by this utility in the formula bar, will still be active. As such one still can follow the progress of the test procedure.	��When this option is unchecked, the screen will be updated (refreshed) as it always does. For non-programmers this means that the monitor screen standard works as it always does.	�Note: normally the screen updating time is corrected in the calculation speed tests by the CalcSpeed utility, since it will calculate calculation time by analyzing the difference between the pre-tests and the main test. However when screen updating is left to normal, it is good practice not to select a neutral cell, which is not shown at the screen (by scrolling the cell away). When a number is entered in a cell, not visual on the screen, it will act a bit as a hidden sheet, meaning that no screen updating is necessary. This can negatively influence the accuracy in the comparison between the pre-tests and the main tests.	��By performing the tests, once with, and once without the screen updating, the user can in fact measure the in�fluence of the screen updating time, since not only the net, but also the total calculation time will be presented in the final resulting dialog box.	�

�

�

The Buttons	�Both those buttons will not clear anything on the worksheet, or in MS Excel itself. It just allows the user to clear his own input, if he wants to restart with clean, blank input boxes on the Main dialog.	�The ‘Clear’ button will only empty the visual input boxes on the Main dialog.	�The ‘Clear All’ button will empty the visual input boxes but also, the input data from previous executed calcu�lation speed tests.	�When calculation speed tests are executed, and the user should decide to redo the test with other ‘Argument to target reference’ methods the input as used in the last previous test is stored in memory. This the means that when a user should toggle between:	�	Toggle value 1 and 2 as argument to target reference	�	Random values between low & high to target reference	�	Continuous loop trough reference to extract arguments	�the previously entered values will be shown in the related input boxes. This is not the case for the target ar�gument reference, but for the source values.	�The ‘Clear All’ button will also clear this previous source argument input data.

�

�

�

�This ‘Cancel’ button allows to exit the utility.	�This ‘OK’ button will start the test procedure. However the utility is provided with checks on ALL input boxes. If the user should have forgotten to enter a value, or should have entered in�valid data, or should have chosen or entered any other incorrect combination of parameters, the user will be informed by Alert messages and the Main dialog will be returned in order to correct the prob�lem, or to exit the utility with the Cancel button.	�

�

�

 Help	�This question mark picture is to be found twice on the main dialog but also on a lot of other subsequent appearing dialog boxes. Also the picture at the bottom (see right) acts as a Help button. So if the user needs some Help, using the question mark pictures and the buttons called ‘Back’, ‘Back to Main Dialog’, ‘About’ and ‘Help’ will lead him from one dialog to another and back. As such, most of the options will be very summarized explained in those dialog boxes.	�In order not to overload this document with to much graphic data, those dialog boxes are shown in black and white, and scaled to 85 % (makes text less readable). So in reality they look better then shown at the last page of this document.	�Also note that they will differ a bit in the standalone version of the utility and the version integrated in the © Acoustic.Function.Box ® acoustic Add-In module for MS Excel.

General:

You shouldn't worry about doing anything wrong, since the utility will restore any value or formula that it should have overwritten, even when the user presses the 'Escape' key.

If you should forget some required input, or enters some wrong input in the dialog input boxes, 'Alert messages' will lead you trough the process.

The CalcSpeed 4.0 calculation speed result dialog box

�

This dialog appears after a calculation speed test is finished.

In this case, the same test as shown in the first example at the beginning of the document was repeated in MS Excel 97 in the same operating system on the same computer.

As you can notice the status bar calculation and message, and the formula calculation be�haves completely different in MS Excel 97 than in MS Excel 5, where the pure calculation time is clearly shorter in MS Excel 5.

While the possibilities in MS Excel 97 are cer�tainly expanded versus MS Excel 5, the addi�tional program overhead seems to slow down MS Excel 97, notwithstanding the fact that MS Excel 97 is a 32 bit program version, while the used MS Excel 5 was a 16 bit version.

The designer does not state that this will be true in all cases, but in this case it does, as it did in lot of other tests.

In this case 2 test were subsequently executed by use of the ‘Repeat current test’ button.

The light gray text are the results of the latest test, the black text underneath are the aver�aged values over both tests. The user can perform as much subsequent tests as he likes.

�

After a test is finished, pressing this button will repeat the current test without showing any other dialog. The data of the current test is stored in memory. As such all subse�quent tests are stored and can be copied at the end to the clipboard.

As you can see in the above example as well the data of the current test is shown, as well the averaged values calculated over all previous + current test. One can repeat this procedure as much as one likes.

�

After a test is finished, pressing this button, we recall the main dialog. This dialog then has preserved all settings from the current test. As such one can easily change only one or more (or none) parameters and then restart the test procedure. Also all this data is stored in memory.

�

When the user will ends the total test procedures, but wants to have a list of all test re�sults already executed, from the moment that the CalcSpeed 4.0 utility was activated, he can end the test with this button.

A table will be copied to the clipboard. In the first column, one finds the description as one can see in the above dialog box. All next columns will represent the results of all test already executed. This can be a combination of tests resulting from the ’Back for new test’ or ‘Repeat current test’ buttons.

This table contains 21 rows and at least 2 columns (description + test result) only limited by the number of tests performed by the user (maximum 250). You can see an example of such a table as part of the first example in this document.	�After this latest dialog disappears from the screen, the user can paste this table anywhere he likes into MS Excel.

�

This button acts the same as the previous one. The only difference is that the first de�scriptive column is neglected.

�

This button explains itself and will direct the user to the Help dialog boxes shown at the end of this document.

�

This button will end the tests. The difference with the ‘Copy All + STOP’ and ‘Copy Results + STOP’ buttons is that this button will remove all data from the clipboard, meaning that the user can’t paste anything into his MS Excel document.	�
More Help and Info dialog boxes

�

The real utility dialog boxes are larger and in color.

The graphic design of the dialog boxes is a compromise between the graphic looks in both MS Excel 5 and MS Excel 97.

MS Excel 5 uses standard Bold characters as dialog box text while MS Excel 97 uses standard fonts. As such text in MS Excel 5 does need more space, often result�ing in Empty lines when the same dialog boxes are shown in MS Excel 97 and later.

Also note, while in principle equal, the text in the standalone version of the CalcSpeed 4.0 utility, will de�viate somewhat from the text in the version integrated in the © Acoustic.Function.Box ® acoustic Add-In mod�ule for MS Excel.

In this document those dialog boxes are scaled to 85 % (makes text less readable) and are entered in black and white in order not to overload this document with mem�ory consuming graphic files.

The real life dialog boxes have exactly the same size as the Main INPUT and RESULTS dialog boxes.

� EMBED MS_ClipArt_Gallery ��� � EMBED MS_ClipArt_Gallery ��� � � �� � EMBED MS_ClipArt_Gallery ��� � �

Dialog boxes related to Main Dialog

�	���
Continuation of dialog boxes related to Main Dialog

� 	�

� 	�

�
Dialog boxes related to Result Dialog

�	�

Additional MS Excel worksheet function

When using CalcSpeed 4.0 the copyrighted FREEWARE version, one will notice that an additional Function ap�pears in the Function Wizard section: Date & Time (of your language version of this section).

This function is called: Chronometer. You can use it as any other MS Excel function

Syntax formula: =Chronometer(“Trigger”)

This function is non-volatile, meaning that it only recalculates, when entered, the Trigger argument changes, or any other event that non-volatile functions trigger to recalculate (deleting, or inserting rows or cells etc.).

It does not recalculate every time the sheet is recalculated as e.g. the NOW() Excel function (called volatile).

The trigger argument does NOT influence the return value in any way, but is only meant to enter a reference to any cell, one wants to act as a trigger for recalculation. The contents or value type in this cell doesn’t matter at all. This argument is OPTIONAL, meaning that one can ignore it completely.

This function is based on Windows API resource code and returns the number of seconds elapsed since the moment the current Windows (not MS Excel) session was started.

In MS Excel 5 16 Bit version: Time resolution 0.005 second (5 milliseconds).	�In MS Excel 5 32 Bit (NT), MS Excel 95 and all later versions: Time resolution 0.001 second (1 milliseconds).		�Compare this with both (most accurate) MS Excel NOW() and VBA ‘Timer’ functions: 	 �	Time resolution 0.055 second (55 milliseconds).

© Acoustic.Function.Box ® users have this function standard available (called Chrono), among hundreds of other additional functions, commands and additional MS Excel extensions, calculation models etc..

� EMBED MSWordArt.2 \s ���

� EMBED MSWordArt.2 \s ���

�	Mon 18 June 2001 	Utility CalcSpeed 4.0	Pag. � PAGE * MERGEFORMAT �1� van � NUMPAGES * MERGEFORMAT �15�

� EMBED MSWordArt.2 \s ���

�

� EMBED MSWordArt.2 \s ���

	� CREATEDATE \@ "ddd d MMM yyyy" * MERGEFORMAT �maa 7 mei 2001� 	Pag. � PAGE * MERGEFORMAT �1� van � NUMPAGES * MERGEFORMAT �15�

�

� EMBED MSWordArt.2 \s ���

�

